Mobile Sensing: Deep Learning on Mobiles

Master studies, Winter 2020/2021

Dr Veljko Pejović
Veljko.Pejovic@fri.uni-lj.si
Deep Learning in Mobile Sensing

• Mobile computer vision
 – Object recognition with CNN
• Activity recognition
 – CNNs and RNNs
Deep Learning in Mobile Sensing

• Depression detection
 – Autoencoder for relevant mobility feature identification
 – “Using autoencoders to automatically extract mobility features for predicting depressive states” by Mehrotra et al.

• Cognitive load inference
 – LSTM processing wireless radar signals reflected off a person’s chest (i.e. breathing, heartbeats)

T. Matkovic and V. Pejovic, Wi-Mind: Wireless Mental Effort Inference Ubittention workshop with UbiComp'18, Singapore, October 2018.
Deep Learning in Mobile Sensing

• Predicting wireless signal quality in vehicular communication
 – LSTM on wireless spectrum sensing data

J. Joo, M.C. Park, D.S. Han, and V. Pejovic
Deep Learning in Mobile Sensing

- Healthcare
 - Predict an onset of a disease

Deep Learning in Mobile Sensing

- Key benefits of deep learning on mobile devices
 - **Reduced delay** – inferences can happen faster, if we don’t need to send the data back and forth to the server
 - **Reduction in bandwidth usage** – spectrum is a limited resource
 - **Operation when the connectivity is not available**
 - **Privacy** – keeping the data (your photos, voice recordings) on the device
Challenges with Deep Learning on Mobiles

• A neural network requires:
 – A lot of storage space/mem – millions of parameters
 – A lot of training data – NNs tend to work well only when there is a lot of (labelled) data available
 – A lot of computation – matrix multiplication, backpropagation, batch training, etc.

• Solving the problems:
 – Training data – background sensing, semi-supervised learning, crowdsourced efforts (Google)
 – Computation and storage space/mem – we cannot rely on the next generation of devices to solve everything
Reducing the Cost of Deep Learning

• Quantization:
 – Instead of 32b floats, use 16b floats, 8b/4b/2b integers, or binary (1/0) weights and activations
 – Example (from float32 to int8):
 • suppose weights and activations are in the range \([-a, a)\)
 • scale the output to \([-128, 128)\): \(x \mapsto \left[128 \frac{x}{a} \right] \).
 • e.g.
 \[
 \begin{pmatrix}
 -0.18120981 & -0.29043840 \\
 0.49722983 & 0.22141714
 \end{pmatrix}
 \begin{pmatrix}
 0.77412377 \\
 0.49299395
 \end{pmatrix}
 =
 \begin{pmatrix}
 -0.28346319 \\
 0.49407474
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 -24 & -38 \\
 63 & 28
 \end{pmatrix}
 \begin{pmatrix}
 99 \\
 63
 \end{pmatrix}
 =
 \begin{pmatrix}
 4770 \\
 8001
 \end{pmatrix}
 .
 \]
 • quantize:
 \[
 \begin{pmatrix}
 -24 & -38 \\
 63 & 28
 \end{pmatrix}
 \begin{pmatrix}
 99 \\
 63
 \end{pmatrix}
 \]
 • dequantize: \(x \mapsto \frac{ax}{16384}\) we get: \(\begin{pmatrix}
 -0.2911377 \\
 0.48834229
 \end{pmatrix}\).
Reducing the Cost of Deep Learning

• Weight sharing/virtualisation:
 – Represent multiple similar weights with a single value (often in combination with quantization)

Reducing the Cost of Deep Learning

• Pruning:
 – Reduce the number of weights after the training – inspired by human biology
 – Unstructured pruning:
 • Prune weights or whole neurons
 – Structured pruning:
 • Prune CNN filters or channels
 – How to select what to prune?
 • Weights lower than a certain threshold
 • Use constrained optimization algorithms
Reducing the Cost of Deep Learning

• Matrix decomposition:
 – Use Singular Value Decomposition (SVD) to replace an \(m \times n \) matrix with two smaller matrices of sizes \(m \times c \) and \(c \times n \)
 • Total calculation drops from \(O(m \times n) \) to \(O(c \times (m+n)) \)
 • \(c \ll m, n \)
Reducing the Cost of Deep Learning

• Other, more advanced approaches
 – Knowledge distillation
 • A larger Teacher network “transfers” knowledge to a smaller Student network

 – Slimmable neural networks
 • The same model can run at different widths allowing adaptive accuracy-efficiency trade-off
Mobile-Ready Deep Learning Networks

• SqueezeNet
 – Same accuracy as AlexNet with 50x fewer parameters
 – Replaces 3x3 filters with 1x1 filters
 – Squeeze layer

• MobileNet
 – Depthwise separable convolutions
 – Probably the best first choice for your deep learning applications
Programming Support for Deep Learning on Mobiles

• Core ML for iOS
• Caffe2 for iOS and Android
• TensorFlow Lite for Android and iOS
• PyTorch Mobile for Android and iOS
• Other players:
 – Fritz AI
 – Snapdragon SDK
 – ...

ML Kit and Firebase ML

- Firebase – a framework supporting mobile app development
 - Messaging, authentication, database, monitoring, etc.
- Firebase ML – (mostly) cloud-based ML
 - Cloud-based inference, model training, sending models to phones
 - Prebuilt models available
- ML Kit – on-device ML
 - Prebuilt models for text recognition, face detection, object detection and tracking, barcode scanning, etc.
TensorFlow Lite

- **TensorFlow** – a framework for NN programming
 - Build and train your NN (on a powerful computer)
 - Validate/test your NN
 - Keras – higher-level API for building and training NNs
- **TensorFlow Lite** – a mobile NN support library
 - Interpret a TF NN model on a mobile device
 - Firebase ML and ML Kit models use TensorFlow Lite under the hood
TensorFlow Lite

- Supported platforms
 - Android, iOS, Raspberry Pi, microcontrollers

- Means of operation
 - Pre-train a model in TensorFlow (Keras)
 - Convert the model to TensorFlow Lite, save to a file, and ship with your app
 - At runtime, an Interpreter runs a model on device

You can also dynamically change the model remotely via the Firebase ML console!
TensorFlow Lite – Achieving Speedup

• Running platform optimization
 – The model can be ran on CPU or GPU

• Faster loading
 – Memory mapped files in Android

• Quantization
 – To 16b floats or integers
 – To 8b dynamic range
 – Weights only, or weights and activations can be quantized

Don’t compress the model file!
TensorFlow Lite – Bootstrapping

• A number of models are already available:
 – https://www.tensorflow.org/lite/models
 – https://github.com/tensorflow/models

• Transfer learning
 – The higher the layer is in the hierarchy, the more specific its inference is
 – Take the first $N-k$ layers of the pre-built model and re-train the last k layers with your data

This is what you do in this week’s lab!
TensorFlow Lite – Bootstrapping

• A shortcut:
 – AutoML model re-trained(?) with your dataset
 – Deployed to Android or pulled from the server on demand
 – To start go to: https://console.firebase.google.com
 – Prepare your dataset with labels
 – Train the model and load the file in your app or provide a link through the AutoML API
TODO

- Read “DeepX: A software accelerator for low-power deep learning inference on mobile devices” by Lane et al. for Thursday!
- Complete the deep learning on mobiles lab by Friday night
- Keep working on your projects!